CO₂ Pipeline infrastructure – lessons learnt

Paul Noothouta*, Frank Wiersmaa, Omar Hurtadob, Doug Macdonaldb, Jasmin Kempec, Klaas van Alphen

dagaEcofys, Kanaalweg 15-G, Utrecht 3526KL, The Netherlands

bSNC Lavalin, 4th Floor, 909-5th Avenue SW, Calgary, Alberta, Canada, T2P 3G5

IEAGHG, The Orchard Business Centre, Stoke Orchard, Cheltenham, GL52 7RZ, GLOS UK

Global CCS Institute, GPO Box 828, Canberra, ACT 2601, Australia

Energy Pipelines CRC, Faculty of Engineering, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia

Abstract

Some 6,500 km of CO₂ pipelines have been operating for years for Enhanced Oil Recovery (EOR) operations, primarily in the United States. Moreover, there are a number of CO₂ pipelines that are in use for CO₂ utilization (CCU) or Carbon Capture and Storage (CCS) operations in Europe and the Americas. Valuable experience and lessons learned are available from these projects relevant for all phases of CO₂ pipeline projects: from early identification to execution and operation. A comprehensive set of information has been collected, evaluated and made accessible with the aim to benefit the development of future CO₂ pipelines. The resulting database shows a wide variety of characteristics among existing CO₂ pipeline projects. In addition, a Reference Manual document adds an overview of results and lessons learned and it can serve as a guide to enable access to the full set of information in the database.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Keywords: CO₂ Pipelines; Lessons Learned;

1. Introduction

Currently, there are over 6,500 km of CO₂ pipeline in North-America, Europe, the Middle East, Africa and Australia. Some of these pipelines have been operating for many years, mostly to transport CO₂ for enhanced oil recovery (EOR) operations in the Americas. Some pipelines are linked to Carbon Capture and Storage (CCS) projects

* Corresponding author. telephone: +31 30 662 3374; e-mail address p.noothout@ecofys.com
and a number of new pipelines associated with CCS are under development at the time of publication. Valuable lessons learned were gained during these projects that can benefit current and future CO₂ pipeline projects.

2. Goal and Scope of the study

The aim of the study was to capture key learnings from the design, construction, operation and regulation of existing CO₂ pipelines and to make these available to project developers, decision makers and regulators working on current and future CO₂ pipeline projects. The results have led to a reference manual that consists of (a) an overview of lessons learned based on existing CO₂ pipeline projects and (b) guidelines for the development of new CO₂ pipeline projects [1].

Table 1 summarizes the key content topics of interest and corresponding data elements. Information was gathered for over 100 properties for each selected project.

<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-categories and Data elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline infrastructure</td>
<td>Pipeline: E.g. Route, length, depth of lay, material, diameter, wall thickness</td>
</tr>
<tr>
<td></td>
<td>Auxiliary equipment: Compression and dehydration</td>
</tr>
<tr>
<td></td>
<td>Costs: Design and construction</td>
</tr>
<tr>
<td>Operation & maintenance, risk and safety</td>
<td>Operational characteristics: E.g. Volume, source, destination, purity, pressure, flow</td>
</tr>
<tr>
<td></td>
<td>Monitoring: Inspections and monitoring</td>
</tr>
<tr>
<td></td>
<td>Safety: Procedures, corridors and valves</td>
</tr>
<tr>
<td>Regulatory regime</td>
<td>Realization process: Spatial planning, environmental impact assessment and permits/concessions</td>
</tr>
<tr>
<td></td>
<td>Restrictions: E.g. Spatial planning and location</td>
</tr>
<tr>
<td>Public concern</td>
<td>Public communication: Media, publications and health</td>
</tr>
<tr>
<td></td>
<td>Decision process: Environmental Impact Assessment</td>
</tr>
</tbody>
</table>

3. Approach

There are over eighty CO₂ pipeline projects around the world. A carefully selected subset of twenty-nine CO₂ pipelines was prepared out of these eighty projects with the aim to cover all key regions and conditions in a balanced way. In this process the following criteria were considered, in addition to the availability of public information:

- Geographical coverage;
- Onshore and offshore;
- Time of construction covering both recent and older projects;
- EOR and storage projects;
- Existing and planned;
- Conventional and new concepts;
- New-built and reuse of pre-existing pipelines.

Table 2 lists the selected pipeline projects.
The resulting list includes sixteen projects in North America, ten in Europe, one in Africa, one Asia and one Australia. To maximize the value of the content presented in the study, the project team decided to include four CO₂ pipelines that have been cancelled. For these projects (Barendrecht (the Netherlands), Jänschwalde (Germany),...
Kingsnorth (England) and Longannet (Scotland)), FEED-studies were available, containing detailed information that is valuable for the purpose of this study.

For each of these pipelines a database was populated. A checklist was prepared for this purpose covering all data elements sought. The first step in data gathering was to carry out a literature survey of the selected CO₂ pipeline projects. The following sources were consulted:

- Project websites;
- Environmental Impact Assessments or Environmental Statements;
- Reports on pipeline routes (sometimes as part of a permit application);
- FEED-studies;
- Journal articles, including scientific articles.

Next, pipeline owners were contacted to seek additional information. Contacts were established by telephone, e-mail and face-to-face meetings at offices and conferences. A large number of interviews were conducted and supplemental information was obtained that could not be retrieved from literature.

4. Data Availability

The quality, accessibility and level of detail of the data presented in the following sections varied for a number of different reasons:

- Confidentiality and commercial constraints;
- Change of pipeline owner;
- Lost or inaccessible data;
- Lack of digitalization;
- Language.

5. Findings Design

5.1. Drivers and Characteristics of CO₂ Pipelines

CO₂ pipelines connect a variety of sinks and sources with each other. The most common CO₂ sources are gas processing plants, fossil-fuelled power stations and natural sources of CO₂. The latter source is commonly used in the United States. These natural sources were developed in the 1970s to provide CO₂ for EOR in Texan oil fields located in the Permian Basin.

Common sinks are oil fields for EOR, but also depleted oil and gas fields are used. The benefit of these storage sites is that there is existing infrastructure in place that may be reused for CO₂ transportation and injection. In some of the European projects (OCAP, Barendrecht, Lacq, Peterhead and Longannet) existing infrastructure has been reused or this is being considered.
The purity of the CO₂ stream depends on the CO₂ source and, if appropriate, the CO₂ capture technology. In all 29 pipeline projects the purity exceeds 95% and $\frac{3}{4}$ of the projects deliver a purity greater than 99%. The most relevant impurities in the CO₂ stream are H₂O, N₂, O₂, H₂S and CO.

Where multiple CO₂ sources and sinks exist, a transmission and distribution network and possibly a hub may develop. Currently operating hubs are almost all located in the USA; examples are the Denver City Hub and the McCamey Hub. We learned that CO₂ hubs have no specific set of rules because they are usually developed ad-hoc when CO₂ sources are available and/or a viable market exists. Each hub has its own standards for CO₂ purity, acceptable impurities, pressure and temperature.

The physical characteristics of the CO₂ pipelines investigated in this study vary greatly. For example, the range in length lies between 1.9 and 808 km. Table 3 shows the spread including other characteristics such as diameter and wall thickness.

The inclusion of short-distance demonstration projects as well as commercial, long-distance EOR projects is the main reason for the large variation. The longest pipelines are located in North America and the average length of CO₂ pipelines there is longer than in Europe. Another interesting point is a positive correlation between length and capacity of the pipelines; longer pipelines have to transport larger volumes of CO₂ to be economically viable.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (km)</td>
<td>1.9 - 808</td>
</tr>
<tr>
<td>External diameter (mm)</td>
<td>152 – 921</td>
</tr>
<tr>
<td>Wall thickness (mm)</td>
<td>5.2 – 27</td>
</tr>
<tr>
<td>Capacity designed (Mt/y)</td>
<td>0.06 – 28</td>
</tr>
<tr>
<td>Pressure min (bar)</td>
<td>3 – 151</td>
</tr>
<tr>
<td>Pressure max (bar)</td>
<td>21 – 200</td>
</tr>
<tr>
<td>Compressor capacity (MW)</td>
<td>0.2 - 68</td>
</tr>
</tbody>
</table>

5.2. Design and construction of CO₂ pipelines

In many respects, CO₂ pipelines are comparable to natural gas pipelines but there are the following key differences:
The properties of CO₂ lead to different design parameters.
In many places CO₂ pipeline projects are first-of-a-kind.
CO₂ pipelines do not transport a product that people see as directly beneficial.
Risks associated with geological storage and the Lake Nyos incident influence the public perception of CO₂ pipelines.

In contrast to natural gas, high-pressure CO₂ pipelines are not self-arresting in terms of longitudinal failure and thus require the installation of crack arrestors. Crack arrestors can simply be occasional joints of pipe with greater wall thickness and improved hoop-stress properties. An alternative is the periodic wrapping with non-metallic materials.

The following dedicated design standards for CO₂ pipelines currently exist:
- United States: CFR part 195
- Canada: CSA Z662
- Europe: DNV-RP-J202
- ISO/TC 265 (currently under development)

CO₂ pipeline projects generally go through the same cycle as other gas pipeline projects. The project cycle typically takes between 3 to 6 years from concept stage to the final investment decision. The actual construction time usually lies typically between 1 and 4 years depending on the length and complexity of the pipeline.

5.3. Re-use of gas pipelines

Pipelines commonly have service lifetimes that exceed their primary reason for existence. Re-purposing a pipeline for CO₂ use can drastically reduce overall CCS project costs and in fact may make the difference between success and failure of a CCS project. Usually but not always, use of an existing pipeline for CO₂ transport involves reversal of flow. As long as the initial design (as modified to take into account any loss of pressure rating over the life of the line in its initial service) can support the pressures, volumes, compositions and design operating parameters required in CO₂ service, there is every reason to re-use the line. Two areas commonly where existing pipeline are commonly re-used are offshore where pipeline costs are high and in onshore acid gas re-injection (a mixture of CO₂ and H₂S is injected into an aquifer or into a depleted gas reservoir).

5.4. Corrosion protection

Corrosion of the pipeline steel (which is usually carbon steel due to economic reasons) is a serious concern related to leakage and needs to be addressed during the whole project. Most CO₂ pipelines are buried under the ground, so they need both internal and external corrosion protection. The most commonly used method to prevent external corrosion is cathodic protection, sometimes in combination with coating. Water is the main risk factor for internal corrosion.

For the projects analyzed in this study the water content in the CO₂ stream covers a wide range: between <50 ppmv (e.g. OCAP, Snøhvit, Kingsnorth, Lacq and Weyburn) up to 630 ppmv (e.g. Central Basin, Sheep Mountain, Monell, Slaughter, Bairoil and Salt Creek).

To prevent corrosion, the pipeline operator aims to keep the water content as low as possible, based on what is technically and economically practicable. Typically, a dehydration system is used to control the water content in the CO₂ stream. CO₂ streams from sources that produce a dry CO₂ gas (e.g. hydrogen plants, gas-processing plants) may not need additional dehydration.
5.5. Compressors and auxiliary equipment

The number and capacity of the booster stations or compressors depend on the pipeline dimensions, transported volume and phase of the CO₂ stream. The majority of the studied pipelines transport the CO₂ in supercritical phase. To avoid phase change in practice the operators stay clear of the phase transition boundaries.

During operation, a sudden unexpected pressure drop in the pipeline can indicate a leak. For such a case, pipelines are equipped with Emergency Shutdown (ESD) valves to isolate the affected pipeline section. The distance between these ESD valves varies over the pipeline and depends on factors like population density and regulations. The selected CO₂ pipelines in this study have an average ESD valves distance of 10-20 km.

Flow meters are another important piece of equipment. They provide both a means of accurate billing and early detection of leaks.

5.6. Operation, inspection and maintenance of CO₂ pipelines

Regulations require that the responsible operator prepares and follows a manual for each pipeline system. It consists of written procedures for conducting normal operations and maintenance activities but also handling abnormal operations and emergencies. In the USA, this manual needs to be reviewed at least once a year.

Limited data was available on the control systems used for CO₂ pipelines. Typically, a SCADA (Supervisory Control and Data Acquisition) system monitors the key operational parameters: pressure, temperature, water content and flow rate. Very small leaks may be hard to detect with this system. The Weyburn project uses a special Leak Detection System (LDS), which monitors for leaks every 5 seconds and displays the related data on a computer screen. In combination with proprietary software, the LDS can determine the size and location of a potential leak. The flow meters integrated into SCADA and LDS help with checking the CO₂ mass balance for contract obligations.

To minimize external influences, most pipelines are buried underground but this makes inspection more difficult. Most countries prohibit building activities within a certain range of the pipeline corridor, typically some 5 m. In addition, visual corridor inspections by foot, car or helicopter take place frequently.

Most operators use so-called “pig runs” to inspect the inside of their pipelines. A pig can clean the pipeline, measure wall thickness and detect leakage and corrosion. With around EUR 1 million (USD 1.4 million) for pipelines with a length between 25 - 270 km, pig runs are very costly. One reason for this is the low lubricity of CO₂, which poses a great challenge.

Besides the pipeline, inspection of auxiliary equipment takes places on a regular basis as well. This includes compressors, dehydration units, valves, cathodic protection system, monitoring systems and emergency systems.

5.7. Decommissioning and abandonment

Pipeline decommissioning is the permanent deactivation of a pipeline to leave the pipeline in a permanently safe condition, as prescribed by a regulatory body.

The main reason for decommissioning of a pipeline is that it no longer has a commercial use. Otherwise, well-constructed and well-maintained pipelines often have a lifetime in excess of the design lifetime. CO₂ pipelines are expected to perform as well or even better than other gas pipelines if the operator carefully addresses corrosion issues.

Because the existing CO₂ pipeline projects are relatively young (40 years), there is hardly any information available about large-scale decommissioning activities.
6. Findings regulatory regime

6.1. Permitting

Depending on the location of the project and the related regulatory framework, an assessment of environmental impacts might be necessary. The approaches and requirements for this vary from country to country. In general, such an assessment for a CO₂ pipeline is not fundamentally different from that for another gas pipeline.

North American regulations require an Environmental Impact Statement (EIS) when the project is complex in nature and needs consideration and analysis of environmental effects, for example under the National Environmental Policy Act (NEPA) in the USA. Opinions of stakeholders and public participation play an important role in North American EISs. According to Directive 2011/92/EU, in Europe an Environmental Impact Assessment (EIA) is required for pipeline sections with a diameter of more than 800 mm and a length of more than 40 km. Most European CO₂ pipeline projects carried out an EIA because the capture and storage facilities triggered it, not the pipeline itself. Not many EIAs or EISs have been carried out that focus specifically on the pipeline.

In the investigated jurisdictions, CO₂ pipelines are within the regulatory framework of all pipelines that transport gaseous or liquid substances. In the USA, CFR 49 Part 195 applies, which was amended in 1989 to include CO₂ in the former “Hazardous Liquid” category. Before this, CO₂ pipelines had to meet codes for natural gas pipelines. Canada has its own regulation for CO₂ pipelines, CSA standard Z662. In Europe, Directive 2099/31/EC on geological CO₂ storage states that the framework used for natural gas pipelines is adequate to regulate CO₂ as well.

The permitting and approval process plays a key role in the timeline realisation of pipeline projects. Securing permits and performing EISs/EIAs usually takes much longer than actual construction. An example for this is the 808 km Cortez pipeline in the US, which took 8 years to complete with only 2 years of construction time. Reason for the long timeline was the requirement for state-by-state approval of the pipeline routing.

The acquisition of necessary permits and right-of-way may be more time consuming than the actual construction of the pipeline, so they have to be done in a timely manner. In the USA, CFR Section 195.248 prescribes a minimum pipeline burial depth of 1.2 m. After construction, regulations require a test of pipeline integrity. CO₂ pipelines that have passed hydrostatic testing are cleaned and dried to prevent corrosion or premature failure on start-up.

6.2. Safety statistics

For the US, the PHMSA (Pipeline and Hazardous Materials Safety Administration) provides statistics on pipeline incidents. According to PHMSA, there have been 46 incidents involving CO₂ pipelines between 1972 and 2012. The main reasons for these incidents were:

- Relief valve failure
- Weld, gasket or valve packing failure
- Corrosion
- Outside force

Most of these incidents occurred in areas with low population density, so they did not cause any reported casualties or fatalities. In contrast, natural gas pipeline accidents injured 217 and killed 58 people over the period 1986 – 2001. However, it is difficult to make effective comparisons between CO₂ and natural gas pipelines yet because of the huge discrepancy in the number of km of pipeline (550,000 km for gas pipelines vs. 6,500 km for CO₂ pipelines in the USA).

In Europe, no incident reporting or analysis system exists for CO₂ pipelines, so industry gathers statistics and reports incidents on a voluntary basis. The OCAP project reported three incidents with small leakages during operation of the pipeline. Again, no human injuries or fatalities occurred.
7. Findings public concern

It is important to understand the key drivers of public concern because it can become a serious threat to a project if not handled in time and in a careful manner. During interviews many pipeline operators made clear that the CO₂ pipeline is usually not the focal point of public opposition. Most concerns relate to either the capture (building of a power plant or production plant) or the storage part of the project. In general, there is less public concern over offshore transport and storage than over onshore projects.

The Barendrecht CCS project in the Netherlands is an example where public concern led to the cancellation of a project. The developers of the nearby ROAD project directly used the lessons learned from Barendrecht by training staff to communicate simply and clearly and to address concerns from local residents adequately.

Most projects investigated in this study used websites, public meetings and telephone helplines as means of communication. The range of available information on the websites vary from project to project. Some projects (e.g. Saskpower Boundary Dam, OCAP and Lacq) have dedicated websites while others (e.g. Kinder Morgan, Jänschwalde and Kingsnorth) just provide simple generic information. The participation in public meetings varies as well. Most North American pipeline projects have seen only limited interest in public meetings. Reasons for this are the difference in population density and the long-standing oil and gas operations that both lead to a higher acceptance of pipelines compared to Europe.

8. Findings CO₂ pipeline costs

Key costs drivers for pipelines are:
• Piping (type and grade of material)
• Equipment (such as compressors, booster stations, valves, crack arrestors, etc.)
• Trenching (i.e. earthworks, excavation, backfilling)
• Distance
• Diameter
• Terrain
• Labour
• Engineering (e.g. design, project management, regulatory/permitting activities)

For some projects, cost data is publicly available and can be used as a reference to estimate future project costs. Due to commercial reasons, engineering companies sometimes keep the design and construction costs confidential. Table 4 presents actual costs for selected CO₂ pipeline projects that were available from public documents.

If data is not readily available, then it is possible to estimate pipeline capital costs using credible sources, such as the NETL guidelines (Carbon Dioxide Transport and Storage Costs in NETL Studies – Quality Guidelines for Energy Systems Studies) [3]. The related formulas reflect US dollars as of 2011 and require diameter and length as input parameters. The results of the estimation can give a first impression of possible CO₂ pipeline costs but are in no way an accurate estimate. In any case, terrain has the strongest influence on pipeline costs and accounts for the largest uncertainty in cost estimation.
<table>
<thead>
<tr>
<th>Pipeline</th>
<th>Costs for pipeline</th>
<th>Currency</th>
<th>Year</th>
<th>Onshore/Offshore</th>
<th>International units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canyon Reef Carriers (SACROC)</td>
<td>46 million USD</td>
<td>1971</td>
<td>Onshore</td>
<td>D= 324 – 420 mm</td>
<td></td>
</tr>
<tr>
<td>Cortez</td>
<td>700 million USD</td>
<td>1982</td>
<td>Onshore</td>
<td>D= 762 mm</td>
<td></td>
</tr>
<tr>
<td>Weyburn CO2 pipeline</td>
<td>51 million USD</td>
<td>2008</td>
<td>Onshore</td>
<td>D= 305 – 356 mm</td>
<td></td>
</tr>
<tr>
<td>Quest</td>
<td>140 million USD</td>
<td>2012</td>
<td>Onshore</td>
<td>D= 324 mm</td>
<td></td>
</tr>
<tr>
<td>Qinshui</td>
<td>39.35 million USD</td>
<td>2006</td>
<td>Onshore</td>
<td>D= 152 mm</td>
<td></td>
</tr>
<tr>
<td>Longannet</td>
<td>160 million GBP</td>
<td>2011</td>
<td>Onshore</td>
<td>D= 500 to 900 mm</td>
<td></td>
</tr>
<tr>
<td>ROAD</td>
<td>90 million EUR</td>
<td>2010</td>
<td>Onshore</td>
<td>D= 450 mm</td>
<td></td>
</tr>
<tr>
<td>Gorgon</td>
<td>9 million AUD</td>
<td>2011</td>
<td>Onshore</td>
<td>D= 269 – 319 mm</td>
<td></td>
</tr>
</tbody>
</table>

* For pipeline and associated compression stations

a Initial estimate in CAD (Canadian dollars). Assumed exchange rate USD 1.00 = CAD 1.00

Operation and maintenance costs are not readily available from the investigated CO₂ pipeline projects but again can be estimated by using the following guidelines:

- Fixed O&M costs of USD 8,454 per mile and year based on experience in North America [3];
- 1.5% of initial capital costs per year excluding costs for compression [2]; although another source (confidential interview) mentions examples where cost are in the range of 3-8% of capital costs.
- EUR 1 million (USD 1.4 million) per pig run for a pipeline of some 10s km length [4].

A number of factors differentiate CO₂ pipelines from other gas pipelines when it comes to costing. Some examples are:

- The CO₂ depressurization characteristics dictate the use of crack arrestors.
- The carbon steel grade needs to be resistant towards brittle fracture because CO₂ can reach very low temperatures when expanded.
- Specific purity and water content specs for the CO₂ suppliers to meet.
- Temperature and pressure according to single dense phase transport.
- Installation of ESD valves to limit CO₂ release in case of leakage.
- Venting procedures need to include provisions for lofting and dispersing released CO₂.
- Gaskets and other non-ferrous materials must be resistant to deterioration in presence of CO₂.

Usually the CO₂ supplier(s) or the CO₂ capture project part is responsible for accounting the costs related to separation, clean-up, compression and dehydration of the raw CO₂ stream.
9. CO2 pipeline database and reference manual

The results of the study have been captured in a CO2 pipeline database and accompanying reference manual document. To enable convenient access to the collated information an interactive web tool was prepared based on Google Maps. It shows the location and routing of the 29 CO2 pipeline projects investigated in this study and allows users to zoom in and access a summary of information from the database (see screenshot in Figure 2).

Figure 2 Interactive map tool for accessing CO2 pipeline database. (demo version available at http://www.globalccsinstitute.com/publications/CO2-pipeline-infrastructure)

The Reference Manual complements the database. On the one hand it serves as a summary of the information in the database to assist project developers, decision makers and regulators. On the other hand it is intended as a guide to accessing the database, pointing to relevant examples in the database where further information can be found. This Reference Manual highlights key design, construction, operational and regulatory learnings from existing work on CO2 pipeline infrastructure.

This reference manual was written primarily for project developers that are planning to build a CO2 pipeline but who are not specialist in detailed engineering calculations or cost estimates. Secondly, the reference manual provides valuable information for governments and regulators, addressing different phases of a CO2 pipeline project, including permitting and regulations.

10. Conclusion

The purpose of this study was to collect non-confidential information on CO2 pipelines and make it available to project developers, decision makers, regulators and interested public. The findings of the study are easily accessible in three different ways: through a reference manual, a database and an interactive web tool.

With the exception of the USA, most countries have little experience with CO2 pipelines or CO2-EOR operations. Even for many of the operational projects certain information is not accessible due to commercial or other reasons.
This applies especially to costs and auxiliary equipment that belongs to other parts of the process chain, like compressors and dehydration units.

A main result of the study is that CO$_2$ pipelines are both similar and different compared to other gas pipelines, natural gas in particular. They are similar to some extent, so that the regulations and standards used for CO$_2$ originate in natural gas pipeline codes. But they are different in terms of the physical properties of CO$_2$, which results in different design parameters, and the risk perception, which the public usually associates with geological storage of CO$_2$.

Secondly, both the database and the reference manual show that CO$_2$ pipeline projects come in a wide variety and that there is no single established blue-print for a CO$_2$ pipeline design. Every project is distinct with respect to length, terrain crossed, type of CO$_2$ source and sink, environment, public views, and complexity of network. This influences design parameters such as material selection, insulation, pipeline diameter, wall thickness, corrosion protection, compression, dehydration, operating temperature, purity of CO$_2$ stream, and maintenance regimes.

The permitting and approval processes play a major role in the overall project timeline. This can take much longer than expected and exceed the construction time by far. The CO$_2$ pipelines in the USA have a good safety track record with 40-year history of operation with no known civilian injuries or fatalities.

11. Acknowledgements

The study was commissioned by IEA Greenhouse Gas R&D Programme (IEAGHG) and the Global CCS Institute (GCCSI). The study was carried out by Ecofys and SNC Lavalin. The authors wish to thank all those who contributed to the dataset through interviews and suggestions for finding sources of information. Furthermore, the authors which to thank the six reviewers from industry, academia and other organisations took part in the expert review of the reference manual and submitted useful comments.

References

